
Finite-State Queries in Lucene
Robert Muir

rmuir@apache.org

mailto:rmuir@apache.org

Agenda

• Introduction to Lucene

• Improving inexact matching:

– Background

– Regular Expression, Wildcard, Fuzzy Queries

• Additional use cases:

– Language support: expansion versus

stemming

– Improved spellchecking

Introduction to Lucene

• Open Source Search Engine Library

– Not just Java, ported to other languages too.

– Commercial support via several companies

• Just the library

– Embed for your own uses, e.g. Eclipse

– For a search server, see Solr

– For web search + crawler, see Nutch

• Website: http://lucene.apache.org

http://lucene.apache.org/

Exact queries

• Typical searches are exact match.

• Terms normalized the same at index/query

– Index time: Dogs -> dog

– Query time: dog -> dog

• Fast

– Analyzers normalize documents terms and

query terms.

– Searching is exact match on normalized

terms.

Inexact queries

• Exact works well for many use cases

– Stemming for full-text document search

• But other use cases demand more:

– Pattern search: Regexp, Wildcard, Glob, …

– Fuzzy search: Levenshtein, …

– Range search: Numeric ranges

• Traditionally slow and not very scalable

– Often involved inspecting every indexed term

How to improve?

• Improve the computational complexity

• Two components: number of terms

examined, and comparison complexity.

• Example worst case: FuzzyQuery

– O(t) terms examined, t=number of terms in all

docs for that field. Exhaustively compares

each term. We would prefer O(log2t) instead.

– O(n2) comparison function, n=length of term.

Levenshtein dynamic programming. We would

prefer O(n) instead.

Complexity: # of terms

• Imagine terms dictionary as a tree

• Before 2.9, queries only operate on one

“subtree”.

– For example, Regex and Fuzzy exhaustively

evaluate all terms, unless you give them a

“constant prefix”.

• It’s a tree-like structure*, lets make use of

this to get O(log2t) inspections if we can!
• http://lucene.apache.org/java/3_0_1/fileformats.html

http://lucene.apache.org/java/3_0_1/fileformats.html

Complexity: comparisons

• The matching function itself can be important,

even if we inspect less terms.

• Comparison of just the matching function*:

• Automaton matching: O(n) where n=word length

– Independent of pattern complexity, transition function:

return transitions[state * points.length + classmap[c]];

• http://tusker.org/regex/regex_benchmark.html

Engine 10k benchmark iterations (ms)

Jakarta 4,594ms

JDK 609ms

Brics Automaton 172ms

http://tusker.org/regex/regex_benchmark.html

Lucene 2.9: Fast Numeric Ranges

421

52

4

44 6442

644642641634633632522521448446445423

63

5 6

• Indexes at different levels of precision.

• Enumerates multiple subtrees.

– But typically this is a small number: e.g. 15

• Query APIs improved to support this.

Automaton Queries

• Only explore subtrees that can lead to an

accept state of some finite state machine.

• AutomatonQuery traverses the term

dictionary and the state machine in parallel

Another way to think of it

• Index as a state machine that recognizes Terms

and transduces matching Documents.

• AutomatonQuery represents a user’s search

need as a FSM.

• The intersection of the two emits search results.

Query API improvements

• Automata might need to do many seeks

around the term dictionary.

– Depends on what is in term dictionary

– Depends on state machine structure

• MultiTermQuery API further improved

– Easier and more efficient to skip around.

– Explicitly supports seeking.

Regex, Wildcard, Fuzzy

• Without constant prefix, exhaustive

– Regex: (http|ftp)://foo.com

– Wildcard: ?oo?ar

– Fuzzy: foobar~

• Re-implemented as automata queries

– Just parsers that produce a DFA

– Improved performance and scalability

– (http|ftp)://foo.com examines 2 terms.

Roll your own:

FuzzyPrefixQuery

// a term representative of the query, containing the field.

// term text is not important and only used for toString() and such

Term term = new Term("yourfield", "bla~*");

// builds a DFA for all strings within an edit distance of 2 from "bla"

Automaton fuzzy = new LevenshteinAutomata("bla").toAutomaton(2);

// concatenate this with another DFA equivalent to the "*" operator

Automaton fuzzyPrefix = BasicOperations.concatenate(fuzzy,

BasicAutomata.makeAnyString());

// build a query, search with it to get results.

AutomatonQuery query = new AutomatonQuery(term, fuzzyPrefix);

Additional/Advanced Use Cases

Stemming

• Stemmers work at index and query time

– walked, walking -> walk

– Can increase retrieval effectiveness

• Some problems

– Mistakes: international -> intern

– Must determine language of documents

– Multilingual cases can get messy

– Tuning is difficult: must re-index

– Unfriendly: wildcards on stemmed terms…

Expansion instead
• Stemming is just a form of query

expansion.

• Don’t remove data at index time

– Expand the query instead.

– Single field now works well for all queries:

exact match, wildcard, expanded, etc.

• Simplifies search configuration

– Tuning relevance is easier, no re-indexing.

– No need to worry about language ID for docs.

– Multilingual case is much simpler.

Automata expansion

• Natural fit for morphology

• Use set intersection operators

– Minus to subtract exact match case

– Union to search multiple languages

• Efficient operation

– Doesn’t explode for languages with complex

morphology

Experimental results

No

Stemming

Porter S-Stem Automaton

S-Stem

MAP 0.4575 0.5069 0.5029 0.4979

MRR 0.8070 0.7862 0.7587 0.8220

Terms 336,675 280,061 305,710 336,675

• 125k docs English test collection

• Results are for TD queries

• Inverted the “S-Stemmer”

• 6 declarative rewrite rules to regex

• Competitive with traditional stemming.

TODO:

• Support expansion models, too in Lucene.

• Language-specific resources

– lucene-hunspell could provide these

• Language-independent tokenization

– Unicode rules go a long way.

• Scoring that doesn’t need stopwords

– For now, use CommonGrams!

http://code.google.com/p/lucene-hunspell/
http://code.google.com/p/lucene-hunspell/
http://code.google.com/p/lucene-hunspell/

Spellchecking

• Lucene spellchecker builds a separate

index to find correction candidates

• Perhaps our fuzzy enumeration is now fast

enough for small edit distances (e.g. 1,2)

to just use the index directly.

• Could simplify configurations, especially

distributed ones.

Conclusions

Conclusions:

• In an upcoming version of Lucene, you

can achieve much more scalable inexact

matching.

• Less comparisons, faster comparisons.

• Full Unicode support: no cheating.

• For advanced uses, you can write your

own queries as finite-state queries.

Backup slides

